7. évfolyam

Paralelogramma-tangram 2.

KERESÉS

Felhasználói leírás

Adottak az ABCD és A’B’C’D’ egybevágó konvex négyszögek. Vágd szét a négyszögeket, különböző átlójuk mentén, 2-2 háromszögre.  Az így kapott 4 darab háromszög átrendezésével milyen alakzatot rakhatsz ki?
Ha találtál egy speciálisat, vajon az csak azért történt, mert „jó” volt a kiinduló alakzat? Esetleg egy másik négyszögből kiindulva is alkotható ugyanilyen speciális alakzat? Próbáld igazolni a sejtésedet!

Tanácsok az interaktív alkalmazás használatához

Figyeljünk oda arra, hogy technikai okokból kifolyólag a szerkesztőprogram a szétvágás után, az azonos csúcsokat indexeléssel különbözteti meg egymástól!
A középpontos tükrözést a piros középpontra kattintással oldja meg a program.

Feladatok

  1. Mit tudsz a paralelogramma belső szögeiről? Hogyan használható fel ez az ismeret a megfelelő kirakás megtalálásához?
  2. A négy háromszöget igyekezz úgy elhelyezni, hogy a közös csúcsuk körül teljes szög alakuljon ki!
  3. Felhasználva egy korábbi tananyagegység (Négyszögparketta 1.) tapasztalatait, hogyan lehetne bizonyítani azt, hogy a konstrukció „univerzális”, vagyis igaz minden konvex négyszögre?